
Efficient Query Processing for Multi-Dimensionally

Clustered Tables in DB2

Bishwaranjan Bhattacharjee
Sriram Padmanabhan
Timothy Malkemus

IBM T. J. Watson Research Center
Hawthorne, NY, USA

{bhatta,srp,malkemus}@us.ibm.com

Tony Lai
Leslie Cranston
Matthew Huras

IBM Toronto Laboratories
Markham, Ontario, Canada

{tonylai,lesliew,huras}@ca.ibm.com

Abstract

We have introduced a Multi-Dimensional
Clustering (MDC) physical layout scheme in
DB2 version 8.0 for relational tables. Multi-
Dimensional Clustering is based on the def-
inition of one or more orthogonal clustering
attributes (or expressions) of a table. The
table is organized physically by associating
records with similar values for the dimension
attributes in a cluster. Each clustering key
is allocated one or more blocks of physical
storage with the aim of storing the multiple
records belonging to the cluster in almost con-
tiguous fashion. Block oriented indexes are
created to access these blocks. In this pa-
per, we describe novel techniques for query
processing operations that provide significant
performance improvements for MDC tables.
Current database systems employ a repertoire
of access methods including table scans, index
scans, index ANDing, and index ORing. We
have extended these access methods for effi-
ciently processing the block based MDC ta-
bles. One important concept at the core of
processing MDC tables is the block oriented
access technique. In addition, since MDC ta-
bles can include regular record oriented in-
dexes, we employ novel techniques to combine
block and record indexes. Block oriented pro-
cessing is extended to nested loop joins and

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,

Berlin, Germany, 2003

star joins as well. We show results from ex-
periments using a star-schema database to val-
idate our claims of performance with minimal
overhead.

1 Introduction

IBM’s DB2 Universal Database version 8 for Unix,
Windows, and open platforms introduces a new fea-
ture called Multi-Dimensional Clustering (MDC) [2].
Multi-Dimensional Clustering provides a flexible and
orthogonal physical clustering organization for a re-
lational table using one or more attributes of the ta-
ble as dimensions of clustering. We have described
the overview of MDC - including how the clustering
is maintained over time - in [5, 1]. In this paper, we
report on the query processing enhancements to DB2
for processing MDC tables efficiently.

Many applications, such as OLAP, data warehous-
ing and spatial, process a table or tables in a database
using a multi-dimensional access paradigm. In the pre-
vious work [5], we described why the prevailing tech-
niques of clustering such as clustering indexes [2, 4]
or range partitioning [2, 4, 3] do not fully address the
requirements of these applications. That paper also
overviewed the unique features of the MDC implemen-
tation and how it addresses these issues better than the
prevailing technology.

In this paper we describe new techniques for query
processing operations on MDC tables that provide sig-
nificant improvements. One of the important features
of MDC is the concept of using blocks of pages for
clustering data. The block oriented data organization
naturally establishes the requirement for various block
based processing techniques for obtaining performance
efficiencies. As a first step, we introduce block indexes
to manage and process these blocks of data efficiently.
We extend the traditional access methods in DB2 to
deal with block oriented processing. A basic block
fetch routine acts as a building block for all these ex-

tensions. Additionally, since an MDC table behaves
just like regular tables, it can have record indexes de-
fined on it. Hence, we need to extend operations such
as Index ANDing and ORing to combine block and
record indexes efficiently. We also introduce a new
block predicate that can be applied as a data predicate
in a once-per-block fashion. We describe our enhance-
ments to the query compiler and other run-time fea-
tures such as prefetching that combine to create the
right efficiencies for processing MDC tables.

We have evaluated the performance of MDC tables
using a variety of atomic operations and more com-
plex queries. We report on the performance of these
experiments and show that the MDC organization can
provide significant performance improvements for a va-
riety of queries and workloads.

The rest of this paper is organized as follows. Sec-
tion 2 describes the overview of our MDC scheme in-
cluding the data layout, the auxiliary data structures,
and the basic aspects of design such as choosing di-
mensions. Section 3 provides an overview of the new
query processing techniques that are made possible us-
ing the MDC data layout. Section 4 describes the en-
hancements to the various access methods in more de-
tail. Section 5 describes the impact of MDC on joins,
group by, and other operations. Section 6 describes
the enhancements to the query compiler and optimizer
for supporting these query processing features. Sec-
tion 7 describes results from experiments comparing
the MDC layout against a normal table clustered by a
primary clustering index. Section 8 provides a conclu-
sion.

2 MDC Overview

This section provides a brief overview of the main
features of MDC [5]. Using this feature, a DB2 ta-
ble may be created by specifying one or more keys
as dimensions along which to cluster the table’s data.
We have created a new clause called ORGANIZE BY
DIMENSIONS for this purpose. For example, the follow-
ing DDL describes a Sales table organized by storeId,
year(orderDate), and itemId attributes as dimen-
sions.

CREATE TABLE Sales(
int storeId,
date orderDate,
date shipDate,
date receiptDate,
int region,
int itemId,
float price
int yearOd generated always as year(orderDate))
ORGANIZE BY DIMENSIONS (region, yearOd, itemId)

Each of these dimensions may consist of one or more
columns, similar to index keys. In fact, a ’dimension

1997,
Mexico,

1

1997,
Canada,

2

1997,
Canada,

1

1997,
Mexico,

2

1998,
Canada,

2

1998,
Mexico,

21997,
Mexico,

2

year(o
rderDate)

itemId

re
gi

on

31
45

127

1997

19981

2

Mexico

Canada

Figure 1: Logical view of physical layout of an MDC
table

block index’ will be automatically created for each of
the dimensions specified and will be used to quickly
and efficiently access data. A composite block index
will also be created automatically if necessary, con-
taining all dimension key columns, and will be used to
maintain the clustering of data over insert and update
activity.

Every unique combination of dimension values
forms a logical ’cell’, which is physically organized as
blocks of pages, where a block is a set of consecutive
pages on disk. The set of blocks that contain pages
with data having a certain key value of one of the di-
mension block indexes is called a ’slice’. Every page
of the table is part of exactly one block, and all blocks
of the table consist of the same number of pages, viz.,
the blocksize. In DB2, we have associated the block
size with the extent size of the tablespace so that block
boundaries line up with extent boundaries.

Figure 1 illustrates these concepts. This MDC table
is clustered along the dimensions year(orderDate)1,
region, and itemId. The figure shows a simple logi-
cal cube with only two values for each dimension at-
tribute. In reality, dimension attributes can easily ex-
tend to large numbers of values without requiring any
administration. Logical cells are represented by the
sub-cubes in the figure. Records in the table are stored
in blocks, which contain an extent’s worth of consec-
utive pages on disk. In the diagram, a block is repre-
sented by a shaded oval, and is numbered according to
the logical order of allocated extents in the table. We
only show a few blocks of data for the cell identified
by the dimension values <1997,Canada,2>. A column
or row in the grid represents a slice for a particular di-
mension. For example, all records containing the value
’Canada’ in the region dimension are found in the

1Dimensions can be created using Rollup functions as ex-
plained in Section 6

blocks contained in the slice defined by the ’Canada’
column in the cube. In fact, each block in this slice
only contains records having ’Canada’ in the region
field.

Block Indexes

In our example, a dimension block index is created on
each of the year(orderDate), region, and itemId at-
tributes. Each dimension block index is structured in
the same manner as a traditional B-tree index except
that at the leaf level the keys point to a block Identifier
(BID) instead of a record identifier (RID). Since each
block contains potentially many pages of records, these
block indexes are much smaller than RID indexes and
need only be updated whenever a new block is added
to a cell or existing blocks are emptied and removed
from a cell. A slice, or the set of blocks containing
pages with all records having a particular key value in
a dimension, will be represented in the associated di-
mension block index by a BID list for that key value.
The following diagram illustrates slices of blocks for
specific values of region and itemId dimensions, re-
spectively.

Canada 21 31 45 77 127 376 501 719

Key
BID List

Canada 21 31 45 77 127 376 501 719

Key
BID List

Canada 21 31 45 77 127 376 501 719

Key
BID List

Dimension Block Index entry for Region 'Canada'

Key
BID List

Key
BID List

Key
BID List

Dimension Block Index entry for itemId = 1

 1 2 7 20 65 101 273 274 476

Figure 2: Block Index Key entries

In the example above, to find the slice containing
all records with ’Canada’ for the region dimension, we
would look up this key value in the region dimension
block index and find a key as shown in Figure 2(a).
This key points to the exact set of BIDs for the par-
ticular value.

Block Map

A Block Map is also associated with the table. This
map records the state of each block belonging to the ta-
ble. A block may be in a number of states including In

Use, Free, Loaded,requiring Constraint enforce-

ment, etc. The states of the block are used by the data
management layer in order to determine various pro-
cessing options. Figure 3 shows an example blockmap
for a table. Element 0 in the block map represents
block 0 in the MDC table diagram. Its availability
status is ’U’, indicating that it is in use. However, it is
a special block and does not contain any user records.
Blocks 2,3,9,10,13, 14, and 17 are not being used in
the table and are considered ’F’ or free in the block

map. Blocks 7 and 18 have recently been loaded into
the table. Block 12 was previously loaded and requires
constraint checking to be performed on it.

Design Considerations

A crucial aspect of MDC is to choose the right set of
dimensions for clustering a table and the right block-
size parameter to minimize the space utilization [5].
If the dimensions and blocksizes are chosen appropri-
ately, then the clustering benefits will translate into
significant performance and maintenance advantages.
On the other hand, if chosen incorrectly, the perfor-
mance may degrade and the space utilization could
be significantly worse. There are a number of tun-
ing knobs that can be exploited to organize the table.
These include:
- Varying the number of dimensions,
- Varying the granularity of one or more dimensions,
- Varying the blocksize (extentsize) and pagesize of the
tablespace containing the table.
One or more of these techniques can be used jointly to
identify the best organization of the table.

The first step is to identify candidate dimension at-
tributes for a table. The main criterion is the need for
clustering based on the workload. Attributes that are
used in Range, equality, or IN-list predicate clauses,
e.g., orderDate > ’1999-02-01’, are potential can-
didates. Similarly, attributes used to load or purge
batches of data, grouping columns, join columns in a
star schema, and combinations of the above are po-
tential candidates for clustering. Unique columns or
columns that are frequently updated (by changing val-
ues) are NOT good candidates.

Given a candidate dimension, it is possible that it
leads to relatively few duplicates for each unique com-
bination. In such cases, we can use rollup hierarchies
and improve the number of duplicates. For instance,
suppose orderDate is a candidate dimension but each
date value only has roughly 10 records in the table. At
this level of granularity, each block is likely to waste a
lot of space. In this case, we recognize that dates can
be rolled up to unique yearAndMonth values. Each
yearAndMonth value will contain roughly 300 (30 ×
10) records which may be sufficient for utilizing blocks.
More details about this and other design considera-
tions can be found in [5].

Impact on existing techniques

It is natural to ask whether the new MDC feature
has an adverse impact or disables some existing fea-
tures of DB2 for normal tables. We are pleased to
report that all existing features such as secondary
RID indexes, constraints, triggers, defining material-
ized views, query processing options, etc. are available
for MDC tables. Hence, MDC tables behave just like
normal tables except for its enhanced clustering and
processing aspects.

0 1 2 3 4 5 6 7 8 9 19 11 12 13 14 15 16 17 18 19
U U F F U U U L U F F U C F F U U F L ...

Figure 3: Block Map entries

3 Query Processing Overview

One of the major goals of MDC is to facilitate efficient
query processing. To this end a lot of new query pro-
cessing technology using block oriented techniques was
developed. While doing this we needed to keep in mind
that block indexes need to be combined with available
record based indexes for processing too. We motivate
the main query processing enhancements using exam-
ples in this section and describe these enhancements
in more detail in the following sections.

Let us suppose that the Sales table described
previously is organized along three dimensions, viz.,
region, year(orderDate), and itemId. Suppose also
that record indexes are created for the shipDate, and
receiptDate columns. Consider the following queries:

Q1 : What is the aggregate sales of
ItemId=1000 sold over a period of years
1997-1998?
Q2: What is the aggregate count of items
ordered in 2002 and shipped in 2003?
Q3 : What is the aggregate sales of all
items ordered in 2002 or received in 2002?
Q4 : List the distinct set of items ordered
from stores in region Mexico in 2002.

The choices for processing query Q1 include the fol-
lowing:

Table Scan: Scan the entire table and only select the
rows with ItemId=1000 and OrderDate falling in
the specified period of 2 years.

Block Index Scan: Use the Block Index on ItemId to
narrow down to specific set of blocks and process
the blocks.

Block Index ANDing: Use the Block Index on
ItemId to obtain a set of block ids which sat-
isfy ItemId=1000, then use the Block Index on
year(orderDate) to obtain another set of block ids
which satisfy the orderDate clause, intersect them
and process the resulting set of blocks.

For processing query Q2 we could employ the following
schemes in addition to the table scan and block index
scan techniques described above:

Record Index Scan: Use the shipDate index to iden-
tify records and process these records by applying
the remaining condition.

Mixed Index ANDing: Use a Record ID based
index on shipDate to obtain a set of record

ids which satisfy 2003; use the Block Index on
year(orderDate) to obtain a set of block ids
which satisfy the orderDate clause; intersect the
set of record ids with the set of block ids to obtain
a set of record ids which can then be processed.

When considering Q3, apart from relation scans and
block index scans, this query could also be processed
as:

Index ORing: Use a Block Id based index on
year(orderDate) to get a set of blocks which
qualify for 2002; use a Record Id based index on
receiptDate to get a set of Records Ids which qual-
ify 2002, take the union with duplicate elimination
of the 2 sets and process the resulting set of blocks
ids and record ids.

If receiptDate had been a clustering column, this
query could be answered by an index ORing of 2 block
indexes. This could have resulted in a set of blocks
which then would have to be processed.

Finally, for query Q4 we could employ an Index
Only scheme based on the composite block index which
includes all dimension columns by selecting on the re-
gion and order year and listing the itemIds.

Now suppose that the database contains an Items
table. Consider the following query.
Find aggregate sales for items in
’sportswear’ ordered in 2002?
Such a query requires a join between the Items table
and the Sales table on the itemId column which can
be processed as nested-loop join using the block index
on itemId.

We will describe in detail the available options out-
lined above in the following sub sections. We be-
gin with some features common to most of the access
paradigms.

3.1 Block Predicates

A predicate is a condition in the query. In Q1 the con-
ditions include one on region with the query asking
for Canada and Mexico. Predicates are of 3 types -
index, data and deferred - depending on which object
they are applied and when. Data predicates are ap-
plied when the data record is accessed from disk and
deferred predicates are applied at a later stage in the
query. In current technology these predicates are ap-
plied on every record. With MDC we have introduced
a new type of predicate called a block predicate which
is applied only 1 time per block. This subsection ex-
plains the benefits of block predicates and its usage.

In a block index there is one index entry for a block
of data. So any index predicate is automatically ap-
plied one time per block instead of once for each record
in the block as could happen with record indexes.
Predicate processing can be quite costly in terms of
CPU usage and this savings translates to more effi-
cient query processing.

Data predicates are applied on a data record object.
For MDC we are able to take advantage of the fact
that all records in a block will have the same value
for the clustering attribute(s) and if some or all of the
predicates deal with these attributes then it should be
okay to apply them on only 1 record in the block. This
is called a block predicate. For example, if we find the
first record of a block has value Africa for attribute
region then so will the rest of the records in the block.
Thus the region predicate in Q1 could be applied as a
block predicate.

If it turns out to be false then we skip processing
the entire block thus saving on CPU cost of processing
the remaining records and any remaining I/O opera-
tions on that lock. If the predicate turns out to be true
then we need not apply the block predicate on the re-
maining records of the block while processing them.
We just need to apply any remaining data predicates.
In both cases, we obtain faster query execution with
block predicates in comparison to current record pred-
icates.

3.2 Block Identifiers

In DB2 a record is identified by a record identifier or
RID. This RID consists of a 24 bit page number which
identifies the page it belongs to and a 8 bit slot num-
ber which indicates the position of the record within a
page. Within a physical partition for a table this RID
is unique.

A block identifier or BID is similar to a RID in
structure. While it is made up of a 24 bit page iden-
tifier and an 8 bit slot, not all the bits are relevant
to identifying a block. A very important characteris-
tic of a BID is that it is the RID of the first record
of a block which is always a system record. So it is
very easy to distinguish a BID from a data RID and is
required for operations like mixed index ORing. The
8 bit slot number in a BID is zero from its definition
above. Even from the 24 bit page number the number
of bits needed to identify a block depends on block
size. Let b be the block size in number of pages, then
the number of relevant bits is given by (24 − log

2
b).

This implies that for a smallest block size of 2 pages
we need 23 bits to identify a block and with the largest
of 256 pages we need just 16 bits. With the default
block size of 32 we will need 19 bits to identify a block.
The remaining bits are carried with the BID and help
maintain compatibility between a RID and a BID.

The smaller size of the BID is of a great advantage
in certain access methods like index ANDing and helps

in efficient query processing.

3.3 Block Fetch Operation

With the introduction of a block we need to be able
to process all the records in a page of a block and
all the pages of a block given a block identifier. This
operation is accomplished by the Block Fetch method.
While processing the records the operator needs to ap-
ply block predicate once per block and the data predi-
cates on every record of the block. It also needs to take
care of locking that needs to be done for concurrency
purposes.

An important duty of the block fetch operator is to
take care of any intra block prefetching that needs to
be done. Prefetching starts from the first page of the
block, which can be identified from the block id and
continues till the end of the block which is a function
of the block size.

The Block Fetch operation forms the core of quite
a few of the query processing techniques discussed be-
low. It also forms the core for many of the block
based data maintenance operations like Reorg which
has been described in [5].

4 Query Processing Access Methods

This section describes the details of the enhancements
to the basic access methods of DB2 for MDC tables.

4.1 Block Index Scan

The Block index scan is a new operation that is intro-
duced for MDC tables. It proceeds in the following
steps:

1. From root of block index, traverse to the leaf node
which satisfies the start key of a query predicate.
It is to be noted that a block index has fewer
number of levels than a corresponding record in-
dex. This translates to quicker access of leaf nodes
from the root for a block index.

2. Scan the leaf to find a Block ID that satisfies the
query predicate. During this time any predicates
which the optimizer deems fit to apply as an index
predicate is applied.

3. Apply the Block Fetch operator described in Sec-
tion 3.3 on the qualifying block.

4. Goto step 2 until the stop key for the query is
reached in the index.

The example query Q1 above is very likely to in-
volve access to a whole stripe of blocks. Thus, the
block scan sub-operation is likely to be the most effi-
cient method of processing this query.

An important savings in block index processing
is the significant reduction of the callback loops de-
scribed in steps 2, 3, and 4. With a record index steps
2 to 4 will have to be repeated for every record. In
contrast, these steps are performed once per block for
a block index. This results in lesser CPU overheads in
accessing the data records via the index. As a result, a
block index based access is cheaper than a table scan
over a higher range of selectivity than a corresponding
record index.

An important aspect of query processing is prefetch-
ing. DB2 supports sequential detection for record in-
dexes. When it is noticed that pages being accessed
are in sequence, then pages ahead of the sequence are
prefetched from disk in anticipation of processing re-
ducing the I/O wait times. However, sequential de-
tection is mostly useful if the index is well clustered.
It also has a build up phase during which there is no
prefetching and it tends to prefetch more than required
in some cases. Additionally, if the index access is on
the inner of a nested loop join, sequential detection
becomes more difficult.

Block index scans use Block Index Look Ahead
Prefetching (BILA) instead of sequential detection.
The idea here is to look into the index and prefetch
only those blocks of data which qualify for the query.
The significantly small size of the block indexes en-
ables the usage of index lookahead techniques for pre-
cise prefetching. The start and stop keys of the query
predicate are used to determine the prefetch bound-
aries. Thus prefetching is triggered even for small
queries and is always exact. Prefetching is triggered
irrespective of the inter-block clustering of the index.
Additionally, BILA prefetching on the inner of a nested
loop join is quite straightforward and effective.

In Figure 2 if the index scan is for ‘Canada’ then
BILA will prefetch precisely the blocks 21, 31, 45, 77,
127, 376, 501 and 719. Since these blocks are not in
sequence, sequential detection techniques would not
work in this case. The prefetch amount is an existing
configuration parameter and can be adjusted appropri-
ately based on the I/O characteristics of the system.
Overall the block fetch operation coupled with BILA
for inter-block prefetching results in reduced CPU us-
age in comparison to conventional record based in-
dexes and better utilization of available I/O through-
put and this observation is validated by our experi-
mental results.

4.2 Block Index Only Scans

There are a set of queries which could be answered by
simply accessing just an index. The example query
Q4 is interested in the items from region ‘Mexico’ in
year 2002. This query could be answered by going
through the composite block index that includes all
three attributes with a start and stop key of <Mexico,
2002> and picking up the itemIds. This type of access

method is known as index only.
There are 2 type of index only access. In the first

we are concerned about the existence of a particular
key (EXIST, IN etc). In the second, additionally, we
are concerned about the number of occurrence of a key
(e.g., COUNT).

Block indexes tend to be very small in compari-
son to a record indexes. In the experimental results
described in Section 7 a RID index occupied 222054
pages whereas the corresponding BID index was only
71 pages - a size difference ratio of 3000. Additionally
the BID index had half the number of levels of its cor-
responding RID index. This translates to very quick
query processing for index only queries where we are
interested in the presence or absence of a particular in-
dex key value(s) without counting (e.g., EXISTS, IN
clauses).

Block indexes do not maintain a count of the num-
ber of records in a block. Hence, queries requiring
counts of the key values cannot be answered in an in-
dex only fashion. If these queries are very important
to the workload, one can always create a record index
on that column in addition to the block index. The
optimizer will automatically pick the cheaper access
method.

4.3 Block Index Anding

Index ANDing allows DB2 to answer queries with
predicates on 2 or more columns of a table linked by
an AND clause (example Q1) by combining multiple
indexes defined on those columns. For record indexes,
ANDing is accomplished by determining the intersec-
tion of record IDs which satisfies the individual pred-
icates and then fetching and processing the resultant
set of records. At this stage any data and deferred
predicates are applied. Currently, the ANDing pro-
cess uses a bloom filter based technique which could
result in false positives. False positives are eliminated
by reapplying all the index predicates on the data in
a deferred fashion. It is to be noted that RIDs are 32
bit numbers and the bloom filter technique uses mul-
tiple hashing schemes to map the RIDS from this 32
bit space to a smaller space.

With MDC we have also provided support for index
ANDing of block indexes and also index ANDing of
block and record indexes. Unlike RIDs where all the
32 bits are relevant to identify the record, the BID
contains a significantly smaller number of relevant bits
as described in Section 3.2. For example, a BID may
be identified with as low as 19 bits for a block size of 32
pages. This number is small enough that we can afford
to use a bit map for block index ANDing and eliminate
the costly hashing steps. In our example, the amount
of memory needed for such a bitmap would just be 16
pages assuming the default page size of 4KB.

Keeping this in mind for block index ANDing we
first attempt a bit-map based intersection approach as

described above if sufficient memory is available. This
would lead to an exact result for the ANDing with no
false positives. It will also be quite fast since there is
no costly hashing involved. In the unlikely event this
memory is not available we fall back to the bloom filter
method of performing index ANDing. The net result of
the operation is a set of BIDs which are then processed
using the Block Fetch operator described before.

The following are the reasons why block index
ANDing can perform significantly better than record
based index ANDing.

• Scanning smaller block indexes versus large record
indexes

• Bit map based approach to index ANDing is faster
than a hash based one. It results in lesser CPU
usage.

• Since we AND a block id on behalf of its set of
records, the number of identifiers being ANDed is
smaller.

• The resulting set of BIDs are processed using the
Block Fetch operator in comparison to individ-
ual processing of a set of RIDs. This reduces the
overhead of processing records.

=+

Key from dimension
block index Rids from

rid index
Resulting rids
to fetch

Figure 4: Index ANDing of Block and RID indexes

In the case of index ANDing of a set of block indexes
with a set of record indexes, the ANDing is done in 2
stages. In the first stage we AND all the block indexes
giving us a set of block ids which qualify. We then
use the fact that given a record id it is easy to deter-
mine the block it belongs too. Using this we take the
first record index in the ANDing and for every RID
which qualifies we determine its BID and intersect it
with the set of BIDs obtained by the ANDing of the
block indexes. While doing this we preserve the set of
RIDs which qualify from the intersection. This set of
qualifying RIDs then forms the basis for further inter-
sections with other record indexes if any in the index
ANDing. The final result is a set of RIDs (in contrast
to set of BIDs for pure block index ANDing) which are

fetched and processed. Figure 4 graphically illustrates
index ANDing of a block and record index.

Analysis of applications indicate that the ability to
index AND a block index with record indexes results
in efficient plans and thus was a key design and imple-
mentation issue.

4.4 Block Index ORing

Index ORing is a method which allows DB2 to answer
queries with predicates on 2 or more columns of a table
linked by an OR clause (for example, Q3) by combin-
ing multiple indexes defined on those columns. Cur-
rently these indexes are record indexes and ORing is
accomplished by determining the union of RIDs which
satisfies the individual predicates and then fetching
and processing the resultant set of records. At this
stage any data and deferred predicates are applied.
The ORing process uses a SORT of all the RIDs with
duplicate elimination to determine the union. The du-
plicate elimination ensures each id in the set is unique.
With MDC we have introduced support for index OR-
ing of block indexes and also index ORing of block
and record indexes. In the former case the process is
very similar to record index ORing except that the in-
puts to the SORT are BIDs and the union produces a
set of BIDs which are then processed using the Block
Fetch Operation instead of a set of RIDs. The major
performance gains are obtained from

• Scanning smaller block indexes.

• SORT of smaller number of BIDs.

• Using Block Fetch operation.

 Index ORing of Block & Rid
Index

=+

Key from
dimension block
index

Rids from
rid index

Resulting
blocks and rids
to fetch

Figure 5: Index ORing of a block and RID index

In the case of an index ORing of block and record
indexes the process is more involved since we need to
find the union of 2 types of identifiers - BIDs and RIDs.
First we do SORT with duplicate elimination of the
qualifying BIDs and RIDs. This results in a set of
unique BIDs and a set of unique RIDs but there exists
a possibility that a record and its block are members

of the SORT output. Processing this set could re-
sult in incorrect results. To solve this problem we use
the property that the BID value of a RID can be de-
termined easily. We go through the set of BIDs and
RIDs and eliminate RIDs whose corresponding BIDs
are present in the list. This pruned set is then pro-
cessed with Block Fetch operation for BIDs in the set
and direct fetch of the records represented by RIDs.
We distinguish a BID from a RID by the fact that
a BID is the the first record in the block and which
is always a system record and cannot be a valid data
record.

Figure 5 shows an index ORing operation that com-
bines a block and a record index. As with index AND-
ing, analysis of applications indicate that the ability
to index OR a block index with record indexes results
in efficient plans and thus was a key design and imple-
mentation issue.

Relational Scans

A relational scan currently proceeds by reading every
page and every record in the table, applying any pred-
icates and projecting the required columns from the
qualifying records. Prefetching is fairly simple since
we are going to read every page in the table and re-
quires fetching pages ahead of the current scan loca-
tion from disk into memory. There could be sections of
empty pages in the table which will be fetched and pro-
cessed. Similarly, MDC tables could also have sections
of empty pages and blocks. However, we can use the
Block Map data structure (Section 2) to skip blocks
that should not be processed including free blocks.
This block map is also used by the prefetch logic to
ensure empty or unwanted blocks are not brought into
memory. While the consultation of the block map is an
added processing overhead in comparison to non MDC
relational scan processing it is quite minimal since the
block map is quite small. On the other hand, if the
table had a lot of updates which created empty blocks
then consulting the block map results in I/O and CPU
cost savings of processing these blocks.

MDC relational scans also make use of block pred-
icates if any. These predicates would be applied once
per block. If the predicate fails then we skip the block
and save the associated cost of processing the remain-
ing records in the block.

5 Query Processing: Joins and other
operations

This section briefly describes the impact of block in-
dexes and block based processing on joins and other
relational operations.

Join Processing

Block Indexes can be used for processing the inner
table of an index Nested-Loop join. In this operation,

each outer join key is used to probe the block index
and identify a set of qualifying blocks that need to
be processed. This kind of processing scheme could
be fairly typical in star schemas. BILA prefetching is
used to prefetch the qualifying blocks for each outer
access. As the experimental results show this makes a
very big difference in performance.

Block Indexes can also be used gainfully in star joins
where the smaller size of the block indexes, usage of
bit maps and other processing enhancements described
for block index ANDing, and the final block fetch op-
erations can result in improved performance.

SORT, Aggregations and Group By operations

Block indexes can be used whenever there are sorting,
aggregation, or group by requirements on dimension
keys or keyparts. For instance, if a query requires
a GROUP BY on the region attribute, it could be
processed by a block index scan.

Symmetric Multi-Processing

Block based index and table scans lend themselves nat-
urally to Symmetric Multi-Processing (SMP). In an
SMP system, each task or operation is typically allo-
cated to several co-operating agents in order to utilize
the multiple CPUs. Typically, tasks are allocated us-
ing a chunk model where the next chunk is allocated
to a requester. MDC access operations are naturally
extended to SMP processing by allocating chunks of
blocks or multiples of blocks to a requesting agent.

There are cases when allocating a block to an agent
could lead to load imbalance among the agents. For
example, suppose there are only 10 blocks of data to
process in a 20 CPU SMP system. Alternatively, there
may be 10 blocks of data to process among 10 agents
but predicate processing or varying numbers of records
in the blocks results in some agents having to do extra
amount of work. These cases are addressed by partial
block processing where each agent is allocated only
part of a block to process at one time. The synchro-
nization of these allocations are handled by new ex-
tensions. In particular, additional care must be taken
to apply block predicates, skipping free blocks, etc in
this mode of processing.

The optimizer uses heuristics and the existing
statistics to decide if partial block processing is re-
quired. Next, heuristics are employed to allocate the
granularity of partial block processing for each agent.
The final division of labor and synchronization among
the agents is done at run time using the chunk alloca-
tion model.

6 Query Compiler and Optimization
enhancements

Given this repertoire of enhanced processing strategies
for MDC tables, it is imperative that the right query

plan is chosen. Hence, the DB2 query optimizer has
been enhanced appropriately to cost and select the ap-
propriate access methods, joins, and aggregation op-
erations when dealing with MDC tables.

The query compiler obtains the knowledge of the
MDC dimensions and the corresponding dimension
block indexes from the catalog tables and populates
the internal Query Graph Model Data structures for
the table accordingly. A major task of the compiler
is to take advantage of dimensions that have been
rolled up (using hierarchies) from base column defini-
tions. The subsequent task is for the query optimizer
to choose the appropriate access methods and other
operations when dealing with MDC tables. The fol-
lowing sections briefly elaborate on these two tasks.

Deriving predicates when using rollup hierar-

chies

One very important aspect of our MDC implementa-
tion is the use of rolled up hierarchy level as a dimen-
sion attribute for generating denser blocks of data. For
example, we can rollup dates to months, quarters, or
years. However, this feature would be difficult to use
if the queries being submitted by users and applica-
tions need to be modified. For example, suppose we
decide to rollup date to year using the year() function
for use as a dimension. Suppose the original query in-
cludes a predicate of the form date > ’1999-01-01’.
Realizing the presence of the year(date) dimension
attribute, DB2’s query compiler will automatically de-
rive a predicate of the form year >= 1999, appropri-
ately called derived predicate, and include it for opti-
mization. This enables the query optimizer to choose
the block index on year for processing this query.

Equality predicates (and others like IN, NOT IN)
are always translatable to derived predicates on the
rollup column. However, inequality and range predi-
cates are only translatable when the deriving (rollup)
expression is monotonic. That is
if A > B then expr(A) ≥ expr(B)
OR
if (A < B) then expr(A) ≤ expr (B)
The year function is monotonic non-decreasing. On
the other hand, the month(date) function is non-
monotonic when dealing with dates from different
years.

We have implemented an expression analyzer com-
ponent in the compiler to determine monotonicity
properties of expressions. We are motivated by elim-
inating the potential for incorrect derivations and re-
ducing the burden of the table creator or user. Our
monotonic expression analyzer is fairly comprehensive
and incorporates all the built-in SQL datatypes, func-
tions, expression clauses and operators. For, example
an expression such as year(date) + 5 will be identi-
fied as monotonic.

Query Optimizer enhancements

The query optimizer has been enhanced to consider all
the block oriented processing techniques described in
the previous sections. The block indexes are included
during the access method selection phase of the MDC
table. The optimizer’s cost models have been adjusted
to account for block based access to the table whether
it be for table scans, index scans, index ANDing, or
ORing. The optimizer’s repertoire of planning strate-
gies has been enhanced to consider the mixed index
ANDing and ORing by combining block and record
indexes. A new data statistic called active blocks has
been added to the statistics of MDC tables. This new
statistic when combined with existing index cardinal-
ity statistics, e.g., FullKeyCard, for block indexes are
mostly sufficient for performing cost and cardinality
estimations of the new techniques inside the optimizer.
The optimizer also deals with cardinality bias issues
when derived predicates are introduced. In particular,
a derived predicate may be used for access method
and/or join method selections but the original predi-
cate is re-applied as a data or residual and the cardi-
nality filter factors are adjusted so that the combined
effect is the same as application of the original predi-
cate.

7 Experimental Results

 Sales

* Prodkey
* Promokey
* Custkey
*SalesDate
* StoreId

Promotion

Period

Customer

*Custkey

*Perkey

*Promokey

Store

*Storekey

Product

*Prodkey

*SalesDate

*storeId

Figure 6: POPS schema

We have conducted a set of experiments using a
star-schema database called POPS on DB2 V8 run-
ning in 8 way SMP mode on a HPUX 11i 64 bit ker-
nel. The machine had 8 x 750 MHz PA-RISC Proces-
sors, 3 VA7400 disk arrays and 32 GB main memory.
The POPS schema included a main fact table called
Sales of size 36 GB and 5 dimension tables on dates,
stores, products, customers and promotions. Figure 6
describes the schema. We compared the performance
of the queries on a MDC Sales table organized by
two dimensions (salesDate, storeId) against a regular
table with primary clustering index (salesDate, stor-
eId) and secondary indexes on other dimension keys.
Both tables were loaded in sorted order of their clus-
tering keys. All queries were run after doing a db2stop

storeId salesDate itemId TblSize
MDC Index Pages 71 72 222,086 –

Non-MDC Index Pages 222,054 222,054 222,086 –
MDC Index Levels 2 2 4 –

Non-MDC Index Levels 4 4 4 –
MDC Index Cluster Factor 1.0 1.0 0.894 –
Non-MDC Cluster Factor 0.99 1.0 0.896 –

MDC Table size – – – 689,264
Non-MDC Table size – – – 681,903

Table 1: Size comparison of MDC and normal tables and indexes

and db2start. This cold start ensures the buffers were
flushed and empty. Additionally all queries were run
using the db2batch tool.

The following subsections describes the experimen-
tal results. The queries include table scans with and
without block predicates, rid scan with and without
joins, block index scans, Index Anding and Oring and
index only plans, and join queries. As can be seen the
performance of the MDC table is usually better than
the performance of the normal table. The speedup
improvements in these experiments ranged from 4%
for table scans to 75% or more for Index ORing op-
erations while using 6% less storage space. Beta cus-
tomers trying this feature are also obtaining similar
large speedups on their databases.

Data Structure Comparison

The following table compares the MDC Sales table and
its indexes with the non MDC version of the table and
its indexes. The 3 key characteristics of an index which
determine how good the index is are

1. number of levels we need to traverse from the root
to get to the leafs.

2. number of leafs in the index. If we have fewer leafs
for the same amount of data it means fewer pages
have to be read and processed.

3. cluster factor of the index. Higher the cluster fac-
tor fewer will be the processing overhead in an-
swering a query using that index.

The block index on salesDate has only 3% of the
number of leafs of the corresponding record index. Ad-
ditionally the number of levels for the index is half of
the record index. This means the overhead of access-
ing the table via the block index is much lower than
using the corresponding record index. This makes the
block index based access better than a table scan for
a larger range of selectivity. Thus making it more us-
able for range queries. The block index on the second
clustering column - storeId - also shows similar char-
acteristics as the one on storeId.

The record indexes on itemId for MDC and non
MDC have same number of leafs and levels. The clus-
ter factors are within 0.2% of each other. As the results
indicate data accesses via these indexes show similar
performance.

Due to the fact that we cluster data in blocks the
MDC table is 1% larger than the non MDC. However
this difference is very small and does not result in any
significant degradation of relational scans.

Overall the space occupied by the MDC table and
its indexes was approximately 6% lesser than the total
space occupied by the non MDC table and its indexes.

Block Index Scans

A set of basic queries ranging from accessing a cell of
data to accessing entire slices were run. The selectivity
of the queries ranged from 0.1% to 25%. In the MDC
case they resulted in block index scans and in the non
MDC case they resulted in record index scan using
the index of same definition as the block index. The
following is a description of the queries

B1. Equality: select sum(handling charges)

from sales where storeId = 1

B2. Range on date: select sum(handling charge)

from sales where salesDate between

1996050 and 1996090

B3. Range on 2 dimensions: select

sum(handling charge) from sales where

salesDate between 1996010 and 1996050

and storeId = 2

B4. Query of a cell: select sum(handling charge)

from sales where salesDate = 1996030 and

storeId = 1

Figure 7 summaries the results.As can be seen with
block indexes significant performance improvements
were observed.

Combining Block and Record Indexes

The 2 fact tables had record indexes on prodkey field
which is the product dimension. We ran 2 queries

65

40.2

18.8

5

32.9
29

10.4

4.5

B1 B2 B3 B4
0

10

20

30

40

50

60

70

Ti
m

e
in

 S
ec

s

MDC non MDC

Block Index Scans

Figure 7: Block Index Scan. Results in secs

which results in index ANDing and ORing plans.
Query C1 has a range predicate of salesDate (a cluster-
ing column) and on prodkey linked by an AND clause.
In the MDC case it results in an index ANDing of
the block index on salesDate with the record index on
prodkey. In the non MDC case it results in the in-
dex ANDing of the record index on salesDate with the
record index on prodkey. The net result in both case
is a set of RIDs which are then individually fetched.

In the case of query C2, the range predicates on
salesDate and prodkey are linked by an OR clause.
This results in index ORing plans. In the MDC case
it results in the ORing of the block index on salesDate
with the record index on prodkey. This results in a
mixed set of BIDs and RIDs which are subsequently
processed. In the non MDC case it results in the index
ORing of the record index on salesDate with the record
index on prodkey. The net result is a set of RIDs which
are subsequently processed.

C1. Index ANDing of BID and RID Indexes:
select sum(quantity sold) from sales

where salesDate between 1996032 and

1996038 and prodkey between 12000 and

12600

C2. Index ORing of BID and RID Indexes: select

sum(quantity sold) from sales where

salesDate between 1996052 and 1996054

or prodkey between 12000 and 12050

As Figure 8 indicates, significant performance im-
provements are observed for the MDC index combina-
tions.

Table Scans

We ran 2 table scan queries - T1 and T2 - described
below.

T1 Block Predicates: select

sum(float(handling charge)) from sales

where salesDate not in (1996000,

1996020, 1996180)

10.9

21.2

6.1 6.2

C1 C2
0

5

10

15

20

25

Ti
m

e
in

 S
ec

s

MDC non MDC

Combining Block & Record Indexes

Figure 8: Combining block and record indexes.

T2 Normal : select storekey,

sum(handling charge) from sales group

by storeId

Query T1 results in a table scan with block pred-
icates on salesDate for MDC. This means all blocks
with salesDate in (1996000, 1996020, 1996180) are not
processed except the first record in these blocks. This
results in a performance improvement for MDC which
is visible in the bar chart.

Query T2 results in normal table scans for both
MDC and non MDC. As seen in the bar chart the per-
formance figures are similar. The slight improvement
for MDC scan is due to the usage of larger block gran-
ularities in SMP processing.

123.6

212.1

115

204.3

T1 T2
0

50

100

150

200

250

Ti
m

e
in

 S
ec

s

MDC non MDC

Table Scans

Figure 9: Table Scans

Multi Table Joins

We ran queries with 2 and 4 table joins in them as
described below:

N1 Nested Loop : select

sum(quantity sold),sum(shelf cost),count(*)

from store, sales where

store.storekey=sales.storeId and

store number=’10’

S2 Multi Table : select sum(quantity sold),

sum(total display cost) from

period, store, product, sales where

period.perkey = sales.salesDate and

store.storekey = daily sales.storeId and

product.prodkey = daily sales.prodkey

and store number = ’01’ and

product.category=42 and calendar date

between ’01/01/1996’ and ’01/28/1996’

Query N1 is a join of the fact table with the store
dimension. It results in a nested loop join plan with
the access of the inner being via the block index on
storeId for MDC. In the non MDC case the access of
the inner is via the record index on storeId. As the bar
chart indicates there is a very significant performance
difference. This is partly because with BILA we do
a very efficient job of prefetching the nested loop join
inner pages.

Query S2 is a multi table join of the fact table with
3 dimensions. In the MDC case 2 of the 3 join columns
are also the clustering columns for the table. In this
example we are trying to find the total quantity sold
for 1 product category over 28 days in a store ’01’.

The bar chart below the results of these queries. As
we can see there is a significant performance improve-
ment in the MDC case.

370

29.5

108.1

7.4

N1 S2
0

100

200

300

400

Ti
m

e
in

 S
ec

s

MDC
non MDC

Multi Table Joins

Figure 10: Multi Table Joins. Results in secs

Record Index Scans

The following 3 queries result in record index scans
for both MDC and non MDC. They touch the 3 star
logical dimensions on which record indexes have been
defined.

R1 Nested Loop : select

sum(quantity sold),sum(shelf cost),count(*)

from product, sales where

product.prodkey=sales.prodkey and

product.category=42

R2 Equality : select sum(handling charges)

from sales where promokey = 2

R3 Range : select sum(handling charge) from

daily sales where custkey between 900000

and 900500

Query R1 exercises the product dimension. It re-
sults in a nested loop join with the inner being a record
index access.

Query R2 is on the promotion dimension. It has an
equality predicate which is answered using the record
index on promokey.

Query R3 runs on the customer dimensions. It has
a range predicate which is tackled by a record index
scan on custkey.

As the results below indicate there is no significant
performance differences between MDC and non MDC.

56.5

93.9

18.8

57.6

94.8

18.5

R1 R2 R3
0

10
20
30
40
50
60
70
80
90

100

Ti
m

e
in

 S
ec

s

MDC
non MDC

 Record Index Scans

Figure 11: Record Index Scans. Results in secs

8 Conclusion

Multi-Dimensional Clustering is a new data layout
technique in DB2 Universal Database version 8. It
provides an efficient block oriented clustering mech-
anism and associated new processing techniques for
obtaining efficiency and better manage-ability of data.
We believe that Multi-Dimensional Clustering is an ef-
fective data organization technique for many modern
database applications. We described the the various
enhancements to query processing in order to take ad-
vantage of this new feature. Our experimental results
showed the significant performance improvements that
are possible for a range of atomic and more complex
queries.

References

[1] Method and System for Multi-Dimensional Clus-
tering in a Relational Database System, 2002.
Patent Filed, IBM Corp.

[2] http://www.ibm.com/software/data/db2/library.

[3] http://www.informix.com.

[4] http://www.oracle.com.

[5] S. Padmanabhan et al. Multi-Dimensional Clus-
tering: a new data layout scheme in DB2. In Pro-
ceedings of the ACM SIGMOD Conference, 2003.
to appear.

